Which Digraphs with Ring Structure are Essentially Cyclic?

نویسندگان

  • Rafig P. Agaev
  • Pavel Yu. Chebotarev
چکیده

We say that a digraph is essentially cyclic if its Laplacian spectrum is not completely real. The essential cyclicity implies the presence of directed cycles, but not vice versa. The problem of characterizing essential cyclicity in terms of graph topology is difficult and yet unsolved. Its solution is important for some applications of graph theory, including that in decentralized control. In the present paper, this problem is solved with respect to the class of digraphs with ring structure, which models some typical communication networks. It is shown that the digraphs in this class are essentially cyclic, except for certain specified digraphs. The main technical tool we employ is the Chebyshev polynomials of the second kind. A by-product of this study is a theorem on the zeros of polynomials that differ by one from the products of Chebyshev polynomials of the second kind. We also consider the problem of essential cyclicity for weighted digraphs and enumerate the spanning trees in some digraphs with ring structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Iteration Digraphs of Lambert Map Over the Local Ring $mathbb{Z}/p^kmathbb{Z}$ : Structures and Enumerations

Let $p$ be prime and $alpha:x mapsto xg^x$, the Discrete Lambert Map. For $kgeq 1,$ let $ V = {0, 1, 2, . . . , p^k-1}$. The iteration digraph is a directed graph with $V$ as the vertex set and there is a unique directed edge from $u$ to $alpha(u)$ for each $uin V.$ We denote this digraph by $G(g, p^{k}),$ where $gin (mathbb{Z}/p^kmathbb{Z})^*.$  In this piece of work, we investigate the struct...

متن کامل

The Laplacian spectrum of some digraphs obtained from the wheel

The problem of distinguishing, in terms of graph topology, digraphs with real and partially non-real Laplacian spectra is important for applications. Motivated by the question posed in [R. Agaev, P. Chebotarev, Which digraphs with rings structure are essentially cyclic?, Adv. in Appl. Math. 45 (2010), 232–251], in this paper we completely list the Laplacian eigenvalues of some digraphs obtained...

متن کامل

The power digraphs of safe primes

A power digraph, denoted by $G(n,k)$, is a directed graph with $Z_{n}={0,1,..., n-1}$ as the set of vertices and $L={(x,y):x^{k}equiv y~(bmod , n)}$ as the edge set, where $n$ and $k$ are any positive integers. In this paper, the structure of $G(2q+1,k)$, where $q$ is a Sophie Germain prime is investigated. The primality tests for the integers of the form $n=2q+1$ are established in terms of th...

متن کامل

On zero divisor graph of unique product monoid rings over Noetherian reversible ring

 Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors.  The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero  zero-divisors of  $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$.  In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...

متن کامل

Addendum to: "Infinite-dimensional versions of the primary, cyclic and Jordan decompositions", by M. Radjabalipour

In his paper mentioned in the title, which appears in the same issue of this journal, Mehdi Radjabalipour derives the cyclic decomposition of an algebraic linear transformation. A more general structure theory for linear transformations appears in Irving Kaplansky's lovely 1954 book on infinite abelian groups. We present a translation of Kaplansky's results for abelian groups into the terminolo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0910.3113  شماره 

صفحات  -

تاریخ انتشار 2009